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Asymmetric bistable systems subject to periodic and stochastic forcing in the strongly
nonlinear regime: Switching time distributions
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1School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

2Space and Naval Warfare Systems Center 2363, 49590 Lassing Road, RM 341, San Diego, California 92152-6147, USA
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A detailed theoretical analysis of the dynamics of a sinusoidally driven noisy asymmetric bistable system is
presented. The results are valid for any two-state system, however, the specific case of the Duffing potential is
considered in detail. The dynamics are considered in the weak noise limit, i.e., when the response of the system
to the external periodic field is strongly nonlinear. The system asymmetry is created by a nonzero dc compo-
nent of the external force, and manifests itself as an asymmetry between the mean switching times between the
potential wells. We obtain explicit analytic expressions for the whole hierarchy of switching time distributions
~including the residence time and return time distributions!. We also obtain expressions for the average resi-
dence times and describe how they depend on asymmetry, together with an explicit expression for the differ-
ence between the residence times in the weak noise limit; the results are presented in the context of using the
switching dynamics to detect weak dc target signals.
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I. INTRODUCTION

The phenomenon of stochastic resonance~SR! @1# has
stimulated series of theoretical work on the dynamics
bistable systems subject to both a time periodic and no
driving. However, the vast majority of these studies ha
concentrated on symmetric systems. Symmetry implies t
on an average, the time the system spends in the two pos
stable steady states are equal. Clearly, in many real w
situations, symmetry cannot be assumed. Indeed the mo
cation of the dynamics due to asymmetry has been propo
as a means of detecting weak dc target signals using no
ear dynamical systems, e.g., fluxgate magnetometers an
perconducting quantum interference devices@2–6#. It is,
therefore, of some importance to investigate the respons
such systems particularly in the regime wherein the dc sig
introduces the most marked changes in the response.

In this and a following paper@7#, we undertake a detaile
theoretical analysis of the effect of asymmetry on the dyna
ics of a bistable system. In contrast to existing studies
symmetric bistable systems~see references in Ref.@1# for
numerous examples! only a small number of studies hav
considered the effect of system asymmetry. Possibly the
asymmetry-mediated effect to be reported was the oc
rence of spectral harmonics at even multiples of the forc
frequency@8# in the weakly nonlinear~or SR! regime. The
spectral properties of the response of these systems
been exhaustively studied@2–4,9–12# together with the resi-
dence time distributions@9#. Recent work has also consid
ered the role of the potential symmetry in a spatially e
tended bistable system@13#.

In this study, we consider the case of the bistable~Duff-
ing! potential subject to a symmetry-breaking dc signal. O
work is an extension of an earlier study@14# wherein the
two-state approximation was applied to a periodically driv
symmetric bistable system, thereby enabling a simplificat
of the dynamics through a point-process formulation. T
1063-651X/2003/68~1!/016103~18!/$20.00 68 0161
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Duffing system has long served as a generic model for
description of many physical systems@15#, but has, more
recently, received considerable attention in the context of
However, we stress that our central results are applicable
general bistable system.

We consider the situation wherein the effects of the asy
metry are expected to be at their most pronounced, i.e., w
the periodic forcing is strong and the noise is weak. Fo
general bistable system, the dynamics can be divided
two different regimes where analytical approximations c
be obtained: thelinear response regimeand thenonlinear
regime. The governing parameter~neglecting any intrawell
motion! is the ratio of the amplitude of the external period
field A to the noise strengthD. In the limit A/D!1, the
response of the system to the periodic force is approxima
linear and hence perturbation theories@16# ~usingA/D as a
small parameter! and linear response theory@17# can be ap-
plied. In the opposite limit,A/D@1, the response of the
system to the external field is highly nonlinear. In this r
gime, which we consider throughout this work, linear r
sponse theories fail and must be replaced by a full nonlin
analysis@9,10,14,15,18#. It is also precisely in this nonlinea
regime that the dynamics show many of their richest featu
such as strong synchronization to the external drive an
double maximum in the signal-to-noise ratio as a function
noise intensity@14#. It is also anticipated that, in this regime
small asymmetries will lead to significant changes in t
dynamics.

In an accompanying paper, we consider the effect
asymmetry on the spectral properties of the response@7#.
Here, however, we consider the switching time dynam
between the two stable states. For a two-state system
dynamics can be completely described by a hierarchy
switching time distributions. Indeed, effects such as stoch
tic resonance have been characterized in terms of resid
time distributions@19#. However, it is important to stress tha
there is a whole hierarchy of such distributions and that
dynamics are only fully specified when all distributions a
©2003 The American Physical Society03-1
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known. The hierarchy is formed by considering the time
system takes to makej switches. The distribution of time
associated with a single switch~e.g., state 1→2 or 2→1),
i.e., when j 51, is commonly referred to as the residen
time distribution. The distribution of times associated w
two switches~e.g., states 1→2 and 2→1, or the opposite
sequence!, i.e., whenj 52, is commonly referred to as th
return time distribution. This idea can be extended toj
53,4, . . . togive the set of switching distributionsPj (t).
Previous studies of symmetric systems have obtained t
retical expressions for quantities such as the residence
distribution @8,9,14,20# but only one study has obtained e
plicit analytic expressions for the whole hierarchy of switc
ing time distributions@14#. It is the extension of this study to
include asymmetry that we now present.

The paper is organized as follows: after some backgro
material comprising the basic Duffing dynamics and its r
resentation as a discrete two-state system, we compute
switching time distributions~these include the residence
well as the return times distributions introduced above! using
an extension of the procedure already utilized earlier@14#.
We also compute statistically significant quantities, most
portantly the mean values of the residence and return ti
~in any practical implementation of this procedure, the
would be the likely relevant experimental observables!, and
investigate the effects of the asymmetry on them. We c
clude with a discussion of the results, making contact w
ongoing work on the efficacy of using the switching tim
asymmetry as a path towards detecting and quantifying w
dc target signals.

II. BACKGROUND

A. Asymmetric Duffing system

We consider the standard overdamped Duffing sys
subject to an external periodic fieldAcos(Vt) and white noise
j(t) with intensityD. The system of equations are given b
@15#

ẋ52
]V~x,t !

]x
1j~ t !, ~1a!

V~x,t !52
a

2
x21

b

4
x41cx2Ax cos~Vt !, ~1b!

^j~ t !j~ t8!&52Dd~ t2t8!, ~1c!

^j~ t !&50. ~1d!

The stochastic equation~1! describes an overdamped pa
ticle motion in the bistable potentialV(x,t). The random
barrier hoppings of the particle occur due to noise coup
with a slowmodulation of the potential by the periodic sign
~the particle is assumed to relax to the potential minima a
each hopping event!.

The extrema of the potential are given by the roots of
equation
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]V~x,t !

]x
52ax1bx31c2A cos~Vt !50,

leading to

x1522A a

3b
cosS 1

3
arccosF A cos~Vt !2c

2AS a

3b
D 3 G2

p

3D ,

~2!

x252A a

3b
cosS 1

3
arccosF Acos~Vt !2c

2AS a

3b
D 3 G D , ~3!

for the locations of the stable points, and

xs522A a

3b
cosS 1

3
arccosF A cos~Vt !2c

2AS a

3b
D 3 G1

p

3D ,

~4!

for the location of the unstable point.
The system asymmetry enters through the parameterc in

V(x,t). The symmetric case corresponds toc50. In the ab-
sence of the periodic field, the potential minima are loca
symmetrically at6Aa/b and the potential barrier height be
tween the pointsx1 ,xs and x2 ,xs are equal and given by
a2/4b. A nonzero value ofc results in an asymmetric shift in
the position of the potential minima and to different barr
heights between the two potential wells. The characteri
relaxation times for the two wells,t rel1

and t rel2
, will also

be different @given by t rel1
21 5Vxx9 (x1 ,t) and t rel2

21

5Vxx9 (x2 ,t)].
The effect of the periodic field is to modulate, i.e., pe

odically lower and raise, the potential wells. The larger t
amplitudeA, the greater the extent of the modulation. F
sufficiently largeA, the system will lose the bistable proper
and became monostable, i.e., the potential wells will perio
cally vanish in turn.

However, due to the asymmetry, the potential wells w
first vanish at different values of the forcing amplitude a
will thus have different critical amplitudesAc1 and Ac2 for
the onset of ‘‘deterministic switching.’’ It is straightforwar
to show that welli ~i.e., the well positioned atxi) vanishes at
Aci where

Aci5Uc2~21! i
2

3
aA a

3b
U, i 51,2. ~5!

The theory developed in the following sections is va
for forcing amplitudes smaller than those required to indu
deterministic switching—this requires

A,min~Ac1 ,Ac2!. ~6!
3-2
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The theory is valid for forcing amplitude that arejust insuf-
ficient to cause deterministic switching—that is, for forcin
amplitudes that are just subthreshold. It is precisely in t
regime that the effects of asymmetry are anticipated to
most pronounced. However, it should be stressed that
theory is also valid in the limitA→0 provided the noise
intensityD also goes to zero~at a faster rate!, see condition
~9! and accompanying discussion.

B. The two-state approximation

The total dynamicsx(t) can be split into two contribu-
tions, an intrawell contribution that arises from motio
within the potential wells and an interwell contribution th
characterizes the switching between the two states. As we
only interested~in this study! in calculating the switching
time distributions, we can neglect the contribution due
intrawell motion. This allows us to replace, fully, dynami
~1! by a reduced two-state model which can be described
a linear rate equation with periodic coefficients@16#:

ẇ152@W12~ t !1W21~ t !#w11W21~ t !,

w11w251, ~7!

wherew1 , w2 are the probabilities of being in state 1 and
and W12(t), W21(t) are the transition rates from states
→2 and 2→1, respectively. Due to the periodic field, w
also have the relations

W12~ t !5W12~ t1T!,

W21~ t !5W21~ t1T!,

whereT52p/V.
If V!t rel1

21 , V!t rel2
21 , then an adiabatic approximatio

@16# can be used and the transition rates approximated a

W12~ t !5
AuVxx9 „x1~ t !,t…Vxx9 „xs~ t !,t…u

2p

3expFV„x1~ t !,t…2V„xs~ t !,t…

D G ,
W21~ t !5

AuVxx9 „x2~ t !,t…Vxx9 „xs~ t !,t…u
2p

3expFV„x2~ t !,t…2V„xs~ t !,t…

D G . ~8!

The expression for the transition rates can be simplified if
impose the condition

A/D@1, ~9!

i.e., the noise is weak compared to the amplitude of the
riodic driving force. This condition results in highly nonlin
ear dynamics referred to, henceforth, as the nonlinear
gime; this regime is to be contrasted with the opposite li
A/D!1 in which linear response theories are applica
01610
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@16,17#. It should be stressed that theory developed her
only valid when condition~9! is satisfied. However, we plac
no restriction on the magnitude ofA other than condition~6!.

In the nonlinear regimeW12 andW21 are highly peaked a
times t85nT and t85(n1 1

2 )T, respectively (n
50,1,2, . . . ), anddrop close to zero at all other times. Th
allows the exponents in Eq.~8! to be Taylor expanded in

time aboutt85nT and t85(n1 1
2)T. For W12 this gives

expFV~x1~ t !,t !2V~xs~ t !,t !

D G
5expH S V„x1~ t8!,t8…2V„xs~ t8!,t8…

D D
1S Vt8„x1~ t8!,t8…2Vt8„xs~ t8!,t8…

D D ~ t2t8!

1S Vtt9 „x1~ t8!,t8…2Vtt9 „xs~ t8!,t8…

D D ~ t2t8!2

2
1•••J

'expFV„x1~ t8!,t8…2V„xs~ t8!,t8…

D GexpS 2
~ t2t8!2

2dt1
2 D ,

~10!

where

dt15A D

ux1~ t8!2xs(t8)u AV2
. ~11!

Similarly,

expFV„x2~ t !,t…2V„xs~ t !,t…

D G
'expFV„x2~ t8!,t8…2V„xs~ t8!,t8…

D GexpS 2
~ t2t8!2

2dt2
2 D ,

~12!

where

dt25A D

ux2~ t8)2xs(t8)uAV2
. ~13!

The transition probabilities can now be rewritten as

W12~ t !5 (
n52`

`

W12maxexpS 2
~ t2nT!2

2dt1
2 D ~14!

and

W21~ t !5 (
n52`

`

W21maxexpS 2
@ t2~n11/2!T#2

2dt2
2 D , ~15!

where
3-3
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W12max5
AuVxx9 „x1~ t8!,t8…Vxx9 „xs~ t8!,t8…u

2p

3expFV„x1~ t8!,t8…2V„xs~ t8!,t8…

D G ,
t850,

W21max5
AuVxx9 „x2~ t8!,t8…Vxx9 „xs~ t8!,t8…u

2p

3expFV„x2~ t8!,t8…2V„xs~ t8!,t8…

D G ,
t85

T

2
. ~16!

The time independent transition ratesW12max andW21max
represent the maximum values thatW12 andW21 attain dur-
ing the periodT. The fact that the ratesW12 and W21 are
effectively zero over half of the forcing period@due to con-
dition ~9!# means Eq.~7! simplifies as follows:

ẇ15H 2W12w1 : 2T/4,t,T/4,

W21w2 : T/4,t,3T/4,
~17a!

ẇ25H W12w1 : 2T/4,t,T/4,

2W21w2 : T/4,t,3T/4,
~17b!

w11w251, ~17c!

t52T/41@~ t1T/4!modT#. ~17d!

III. SWITCHING TIME DISTRIBUTIONS AND THE
STATISTICS ASSOCIATED WITH THEM

A. The residence time distribution

We first proceed to calculate the residence time distri
tion. In the following section, this calculation is generaliz
to obtain the return time density as well as the higher or
switching time distributions. Before proceeding with the c
culation, we discuss the influence that condition~9! has on
the switching time dynamics. In this regime, the dynamics
the transition process are considerably simplified. To und
stand why, consider Fig. 1~a! that plots the time dependen
transition ratesW12 and W21 over an interval of5

2 T. Each
peak is approximately Gaussian with standard deviationdt1
~for the W12 peaks! given by Eq.~11! anddt2 ~for the W21
peaks! given by ~13!. When condition ~9! is satisfied
dt1 ,dt2!T and, thus, the transition probabilities are high
localized about integer multiples ofT/2. As illustrated in Fig.
1~b!, this means that transitions from the state 1 to 2 can o
occur near~but not precisely at! timesnT, and the transitions
from the state 2 to 1 can only occur near times (n11/2)T.
The net effect of this is that only a maximum of one tran
01610
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tion can occur every half cycle, thus placing a lower bou
~of approximatelyT/2) on the~residence! time that the sys-
tem can remain in each state.

As we will see, the above considerations will enable us
develop a method for calculating the switching time dist
butions based on a decomposition of the transition seque
into a sum of independent random variables. This techniq
developed for the symmetric system@14#, differs from pre-
vious theoretical approaches@8,9,20# and has a number o
advantage; for example, the switching time dynamics of
whole hierarchy of switching time distributions can be o
tained and the variation in the phase at the switching po
~phase distribution! is easily taken into account.

First, we need to introduce some notation. We denote
t j ,l the time betweenj 11 ( j 51,2, . . . )transitions when the
first transition was to statel @wherel P(1,2)]. With this defi-
nition t1,1 denotes the time between two transitions when
first transition was to state 1 andt1,2 denotes the time be
tween two transitions when the first transition was to state
These intervals are shown in Fig. 1~b!. Clearly, this is a
rather complicated way of saying thatt1,1 and t1,2 are the
residence times of state 1 and 2, respectively. However,
definition is required when we calculate the distribution
return times and higher order switching distributions. T
residence times can now be decomposed into a sum of t
independent random variables@see Fig. 1~b!#

t1,15Dh1,11ds11d f 1 ,

t1,25Dh1,21ds21d f 2 .

The variablesDh1,1 andDh1,2 carry the periodic informa-
tion and can only take on values of (m11/2)T, m
50,1,2. . . . Thevariablesds1 , d f 1 , ds2, andd f 2 are con-
tinuous and take on values@2T/4:T/4#. These variables take
into account the smearing of the transition point due to no
i.e., they allow for the fact that the transitions do not occ
precisely at integer multiples ofT/2. The variableds1 takes
into account the smearing when the system makes a tra
tion from state 2 to state 1 (s denotes that this is the start o
the transition sequence! and d f 1 takes into account the

FIG. 1. ~a! The transition ratesW12(t) andW21(t) and~b! typi-
cal response of the two-state filter.
3-4
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ASYMMETRIC BISTABLE SYSTEMS SUBJECT TO . . . PHYSICAL REVIEW E68, 016103 ~2003!
smearing when the system makes a transition from state
state 2 (f denotes that this is the end of the transition
quence!. The variablesds2 andd f 2 are the same but for th
opposite transition sequence, i.e., the start of the sequen
the transition from state 1 to 2 and the end of the sequenc
the transition from state 2 to 1. Clearly,ds1 and2d f 2 have
identical distributions~i.e., they are independent identical
distributed! as areds2 and2d f 1.

We may now proceed with the calculation of the residen
time distributions. Our method is based on the calculation
the characteristic functionsC1,1 andC1,2 of the random vari-
ablest1,1 andt1,2, respectively. These characteristic functi
are related to the residence time distributionsP1,l where l
P(1,2), through the Fourier transform,

C1,l~v!5E
0

`

P1,l~t1,l !exp~ ivt1,l !dt1,l , ~18!

with the inverse Fourier transform givingP1,l(t1,l),

P1,l~t1,l !5
1

2pE2`

`

C1,l~v!exp~ ivt1,l !dv. ~19!

It is easy to see that the characteristic functions are the
erage of the exponential functions

C1,1~v!5^exp~ ivt1,1!&,

C1,2~v!5^exp~ ivt1,2!&.

Since the residence times include a sum of three indepen
random variables, the characteristic functions can be rew
ten as

C1,1~v!5^exp@ iv~Dh1,11ds11d f 1!#&

5^exp~ ivDh1,1!&^exp~ ivds1!&^exp~ ivd f 1!&

5CDh1,1
~v!Cds1

~v!Cd f 1
~v!. ~20!

Similarly,

C1,2~v!5^exp@ iv~Dh1,21ds21d f 2!#&

5^exp~ ivDh1,2!&^exp~ ivds2!&^exp~ ivd f 2!&

5CDh1,2
~v!Cds2

~v!Cd f 2
~v!. ~21!

Clearly, the problem has been reduced to the calculatio
the characteristic functionsCDh1,1

(v), CDh1,2
(v), Cds1

(v),

Cd f 1
(v), Cds2

(v), andCd f 2
(v).

The characteristic functionCDh1,1
(v) can be found by

first calculating its associated distribution,PDh1,1
. To obtain

this distribution we need to know the probabilityp that the
system remains in state 1 for a complete cycle of the driv
force. @consequently, (12p) is the probability per period
that the system will escape from state 1#. This probability
can be obtained by considering the decay of the popula
of state 1 over a complete forcing cycle. The equation g
erning the population is
01610
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ẇ152W12~ t !w1 , ~22!

with the initial conditionw1(t1)51. This can be formally
integrated to yield

w1~ t !5expS 2E
t1

t

W12~s!dsD . ~23!

The probability to remain in state 1 for one periodT is then
given byw1(t11T). Using Eq.~14!, we can write

w1~ t11T!5expS 2E
t1

t11T

W12~s!dsD
5expS 2E

2T/4

T/4

W12maxexpF2
t2

2dt1
2GdtD

.exp~2A2pW12 maxdt1!5exp~2I 1!5p,

~24!

where we have defined

I 15E
2T/4

T/4

W12~ t !dt.A2pW12maxdt1 . ~25!

The probability to switch from state 1 to 2 in the fir
period is therefore (12p) and in this case, we have~Fig. 1!
Dh1,15T/2. However, if the system switches during the se
ond period then we haveDh1,153T/2 and this will occur
with probability (12p)p. In general, if the system switche
during the (m11)th period thenDh1,15(m11/2)T and this
will occur with probability (12p)pm. It is easy to see there
fore that the probability density functionPDh1,1

(Dh1,1) is
given by

PDh1,1
~Dh1,1!5 (

m50

`

~12p!pmd„Dh1,12~m11/2!T….

~26!

The characteristic function can be found by taking the F
rier transform

CDh1,1
~v!5E

0

`

PDh1,1
~Dh1,1!exp~ ivDh1,1!dDh1,1

5~12p!exp~ ivT/2! (
m50

`

@pexp~ ivT!#m

5
1

cos~vT/2!2 iapsin~vT/2!
, ~27!

whereap5(11p)/(12p).
To find the distributionPd f 1

(d f 1)—which is the distribu-

tion of switching times around timesmT—we need to again
consider the solution of Eq.~22! over a single forcing period
Due to condition~9!, W12 is effectively zero outside the
range@2T/4:T/4# and hence, we can write
3-5
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w1~d f 1!5C0expS 2E
2T/4

d f 1
W12~s!dsD , ~28!

which is interpreted as the probability of remaining in stat
for the time interval (d f 11T/4). The probability to escape
from the state 1 is therefore@12w1(d f 1)#. The probability
density ofd f 1 is now given by

Pd f 1
~d f 1!5

d

dd f 1
@12w1~d f 1!#

5C0W12~d f 1!expS 2E
2T/4

d f 1
W12~s!dsD , ~29!

where the normalization constantC0 can be found from the
condition

15E
2T/4

T/4

Pd f 1
~d f 1!dd f 15C0~12p!,

which yieldsC05(12p)21. To a good degree of approx
mation ~see Appendix! Eq. ~29! can be approximated as
Gaussian with meand f 1m and standard deviations f 1, i.e.,

Pd f 1
~d f 1!5

1

A2ps f 1
2

expS 2
~d f 12d f 1m!2

2s f 1
2 D . ~30!

It is worth pointing out that, in general,d f 1 has a nonzero
mean value that is always negative. This implies that, on
average, transitions occurbeforethe maximum inW12. The
exact amount of the shift depends on the forcing freque
~see Appendix for details!.

The characteristic functionCd f 1
(v) can now easily be

obtained from Eq.~30! as

Cd f 1
~v!5E

2`

`

Pd f 1
~d f 1!exp~ ivd f 1!dd f 1

5exp~ ivd f 1m!expS 2
v2s f 1

2

2 D . ~31!

By considering the switching dynamics from state 2, exac
the same procedures can be employed to obtain the rem
ing characteristic functionsCDh1,2

(v), Cds1
(v), Cd f 2

(v),

andCds2
. We obtain

PDh1,2
~Dh1,2!5 (

m50

`

~12q!qmd„Dh1,22~m11/2!T…,

~32!

where q is the probability of remaining in state 2 for on
periodT:

q5exp~2I 2!, ~33!

with
01610
1

n

y

y
in-

I 25E
T/4

3T/4

W21~ t !dt.A2pW21maxdt2 . ~34!

Therefore,

CDh1,2
~v!5E

0

`

PDh1,2
~Dh1,2!exp~ ivDh1,2!dDh1,2

5~12q!exp~ ivT/2! (
m50

`

@qexp~ ivT!#m

5
1

cos~vT/2!2 iaqsin~vT/2!
, ~35!

whereaq5(11q)/(12q), and

Pd f 2
~d f 2!5Pd f 2

~d f 2!expS 2
~d f 22d f 2m!2

2s f 2
2 D . ~36!

The remaining characteristic functions can be obtained
noting that

Pd f 1
~d f 1!5Pds2

~2d f 1!

and

Pd f 2
~d f 2!5Pds1

~2d f 2!,

i.e., the average valuesd f 2m52ds1m and d f 1m52ds2m .
This implies that the characteristic functions ofds1 andds2
are the complex conjugate of the characteristic functions
d f 2 andd f 1:

Cds1
~v!5Cd f 2

* ~v!, Cds2
~v!5Cd f 1

* ~v!.

Having obtained all the necessary characteristic functio
the residence time distributions can finally be calcula
from Eqs.~20! and ~21! as

P1,1~t1,1!5
12p

A2p~ss1
2 1s f 1

2 !
(

m50

`

pm

3expS 2
@t1,12~m11/2!T2ds1m2d f 1m#2

2~ss1
2 1s f 1

2 !
D

~37!

and

P1,2~t1,2!5
12q

A2p~ss2
2 1s f 2

2 !
(

m50

`

qm

3expS 2
@t1,22~m11/2!T2ds2m2d f 2m#2

2~ss2
2 1s f 2

2 !
D .

~38!
3-6
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The average residence times

Having obtained the residence time distributions, it is n
straightforward to find the average residence times th
selves. The residence times are given by the first momen
the distributionsP1,1(t1,1) andP1,2(t1,2)

^t1,1&5E
0

`

t1,1P1,1~t1,1!dt1,1

5~12p! (
m50

`

pm@~m11/2!T1ds1m1d f 1m#

5ap

T

2
1ds1m1d f 1m ~39!

and

^t1,2&5E
0

`

t1,2P1,2~t1,2!dt1,2

5~12q! (
m50

`

qm@~m11/2!T1ds2m1d f 2m#

5aq

T

2
1ds2m1d f 2m . ~40!

The difference between the first moments,DT, can also
be easily calculated~noting ds1m52d f 2m and d f 1m
52ds2m) to be

DT5^t1,1&2^t1,2&5@ap2aq#
T

2
1ds1m1d f 1m2ds2m2d f 2m

5@ap2aq#
T

2
12~ds1m1d f 1m!. ~41!

These expressions can be simplified further under the c
dition that the system is almost synchronized to the driv
field. In this situation, the system is switching every h
period and henceap5aq51 ~since p5q50). Hence, the
residence times reduce tôt1,1&5ds1m1d f 1m and ^t1,2&
5ds2m1d f 2m , andDT52(ds1m1d f 1m).

For the caseucu!D!DV ~where DV5min$uV(x1 ,t)
2V(xs ,t)u,uV(x2 ,t)2V(xs ,t)u%), an approximate expres
sion for the dependence ofDT on the asymmetry can b
found. In this situation, the probabilityp and q can be ap-
proximated as

p5exp~2I 1!5 (
n50

`

~2I 1!n/n! .12I 1 ,

q5exp~2I 2!5 (
n50

`

~2I 2!n/n! .12I 1 ,

where it is assumedI 1,2!1.
01610
-
of

n-
g
f

The parametersds1m and d f 1m can be found asd f 1m5
2I 1dt1 /A2p and ds1m5I 2dt2 /A2p in the limit of weak
noise intensity~see Appendix!. The residence times can
therefore, be approximated as

^t1,1&5
T

I 1
1

I 2dt22I 1dt1

A2p
~42!

and

^t1,2&5
T

I 2
1

I 1dt12I 2dt2

A2p
, ~43!

and the difference between the average residence times

DT.
T

I 1
2

T

I 2
1

2~ I 2dt22I 1dt1!

A2p
.

Assumingdt1.dt25dt, we can rewrite this last expressio

DT5
T~ I 22I 1!

I 1I 2
S 112I 1I 2

dt

TA2p
D .

T~ I 22I 1!

I 1I 2
5

T

I 1
2

T

I 2
,

~44!

whereu2I 1I 2dt/TA2pu!1.
Using Eqs.~25! and~34! and assuming the parameterc is

sufficiently weak such thatVxx9 (x1,0).Vxx9 (x2 ,T/2), and
Vxx9 (xs1,0).Vxx9 (xs2 ,T/2), where x15x1(0), xs15xs(0),
xs25xs(T/2), andx25x2(T/2), DT can be rewritten as

DT5
T

A2pdt
S 1

W12max
2

1

W21max
D

.
TA2p

dtAuVxx9 ~x1,0!Vxx9 ~xs1,0!u

3FexpS DU1s

D D2expS DU2s

D D G ,
where

DV1s5V~xs1,0!2V~x1,0!5DU1s1D1sc,

DU1s5V~xs1,0!c502V~x1,0!c505U~xs,0!2U~x1,0!,

D1s5S dV~xs1,0!

dc
2

dV~x1,0!

dc D
c50

5~xs12x1!c50 ,

DV2s5V~x2 ,T/2!2V~xs2 ,T/2!5DU2s1D2sc,

DU2s5V~x2 ,T/2!c502V~xs2 ,T/2!c50

5U~x2 ,T/2!2U~xs2 ,T/2!5DU1s5DU,

D2s5S dV~x2 ,T/2!

dc
2

dV~xs2 ,T/2!

dc D
c50

5~x22xs2!c5052D1s52Dx .
3-7
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This yields

DT.
TA2p

dtAuVxx9 ~x1,0!Vxx9 ~xs1,0!u

3expS DU

D D FexpS Dxc

D D2expS 2Dxc

D D G
.

TA2pexp~DU/D !

dtAuVxx9 ~x1,0!Vxx9 ~xs1,0!u

3F11
Dxc

D
1

1

2 S Dxc

D D 2

211
Dxc

D
2

1

2S Dxc

D D 2G
.

TA2p

dtAuVxx9 ~x1,0!Vxx9 ~xs1,0!u
expS DU

D D 2Dxc

D
. ~45!

Finally, noting thatdt5AD/DxAV2, we obtain the final ex-
pression as

DT.2~2pDx!
3/2A A

DuVxx9 ~x1,0!Vxx9 ~xs1,0!u
expS DU

D D c

D

1O„~c/D !3
…. ~46!

Note that the next correction isO„(c/D)3
… and, hence, Eq

~46! is expected to be a good approximation over a w
range ofc.

B. The return time and higher order distributions

In the last section, we calculated the residence time
tribution and the average residence times. This calcula
will now be generalized to enable the return time and hig
order switching time distributions to be obtained.

The next distribution in the hierarchy is the so called
turn time distribution@21#. This distribution is defined as th
time required for the system to switch from one state to
other and then back again and, hence, it is the time betw
three switching events. In our notation, we writet2,1—this is
the time taken for the system to start in state 1~the timing
starts when the system first makes a transition to state!,
make a transition to state 2, and then return back to sta
Similarly, we write t2,2 to represent the opposite sequen
~i.e., start in state 2, switch to state 1, and then return to s
2!. The probability density functionsP2,1(t2,1) andP2,2(t2,2)
associated with these times are referred to as the return
densities. We can continue this line of reasoning and de
density functions for an arbitrary number of switching eve
ast j ,1 andt j ,2 wherej 51,2,3, . . . . Forexample,t4,1 would
be the time required for the system, starting in state 1
make the transition sequence 1→2, 2→1, 1→2, and fi-
nally, 2→1. Of most interest are the residence and ret
time distributions. However, in certain cases, such as in
calculation of the power spectral density of the system~see
Ref. @7#!, it is necessary to know the whole hierarchy
distributions.
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We now consider the calculation of the hierarchy
switching time distributions with emphasis on the the retu
time distribution. In a similar fashion to the residence tim
the return times can be decomposed into a set of indepen
elemental switching events

t2,15Dh1,11Dh2,21ds11d f 1 ,

t2,25Dh1,21Dh2,11ds21d f 2 ,

whereDh2,2 is the length of the second time interval spent
state 2 andDh2,1 is the length of the second time interv
spent in state 1. We can extend this notation to denote
time interval between switching eventk and (k11) as
Dhk,l . The l P(1,2) denotes which state the system was
between the two switching events. Therefore, for the gen
case, we have the following decomposition:

t j ,15 (
k51

j

Dhk,[22(kmod2)]1ds11d f [22( jmod2)]

5Dh1,11Dh2,21Dh3,11Dh4,21•••1ds1

1d f [22( jmod2)] ,

which starts from the state 1, and

t j ,25 (
k51

j

Dhk,[11(kmod2)]1ds21d f [11( jmod2)]

5Dh1,21Dh2,11Dh3,21Dh4,11•••1ds2

1d f [11( jmod2)] ,

which starts from the state 2.
As before, we calculate the return time densities via

characteristic functions:

C2,1~v!5E
0

`

exp~ ivt2,1!P2,1~t2,1!dt2,1,

C2,2~v!5E
0

`

exp~ ivt2,2!P2,2~t2,2!dt2,2.

These can be broken down into a product of elemental c
acteristic functions as follows,

C2,1~v!5^exp@ iv~Dh1,11Dh2,21ds11d f 2!#&

5^exp~ ivDh1,1!&^exp~ ivDh2,2!&^exp~ ivds1!&

3^exp~ ivd f 2!&

5CDh1,1
~v!CDh2,2

~v!Cds1
~v!Cd f 2

~v!,

C2,2~v!5^exp@ iv~Dh1,21Dh2,11ds21d f 1!#&

5^exp~ ivDh1,2!&^exp~ ivDh2,1!&^exp~ ivds2!&

3^exp~ ivd f 1!&

5CDh1,2
~v!CDh2,1

~v!Cds2
~v!Cd f 1

~v!.
3-8
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The only characteristic functions that were not calcula
in the last section areCDh2,2

(v) and CDh2,1
(v). However,

these can trivially be obtained by noting that the variab
Dh2,2 and Dh1,2 are identically distributed and henc
CDh2,2

(v)5CDh1,2
(v), where CDh1,2

(v) is given in Eq.

~35!. Similarly, CDh2,1
(v)5CDh1,1

(v), whereCDh1,1
(v) is

given in Eq.~27!. By noting thatss1
2 5s f 2

2 andss2
2 5s f 1

2 , the
inverse Fourier transform ofC2,1(v) and C2,2(v) can now
be taken to obtain the return time densities,

P2,1~t2,1!5~12p!~12q! (
n50

`

pn (
m50

`

qm
1

A4pss1
2

3expS 2
@t2,12~m1n!T#2

4ss1
2 D ~47!

and

P2,2~t2,2!5~12p!~12q! (
n50

`

pn (
m50

`

qm
1

A4pss2
2

3expS 2
@t2,22~m1n!T#2

4ss2
2 D . ~48!

The generalized expressions for the probability densi
Pj ,1(t j ,1) andPj ,2(t j ,2) can be found in a similar fashion. W
consider the cases of odd and evenj separately. Takingj odd
and noting that all variablesDhk,1 are identically distributed,
as are all the variablesDhk,2 , we can write

t2r 11,15(
l 50

r

Dh2l 11,11(
l 51

r

Dh2l ,21ds11d f 1

and

t2r 11,25(
l 50

r

Dh2l 11,21(
l 51

r

Dh2l ,11ds21d f 2 ,

where r 51,2,3, . . . . Thecharacteristic function for state
can now be written as

C2r 11,1~v!5S )
n50

r

CDh2n11,1
~v!D

3S )
m51

r

CDh2m,2
~v!D Cds1

~v!Cd f 1
~v!

5CDh1,1

r 11 ~v!CDh1,2

r ~v!Cds1
~v!Cd f 1

~v!,

which can be rewritten as
01610
d

s

s

C2r 11,1~v!5~12p!r 11~12q!rexp$ iv@~r 11/2!T1ds1m

1d f 1m#%exp@2v2~ss1
2 1s f 1

2 !/2#

3S (
n50

`

exp~ ivnT2nI1!D r 11

3S (
m50

`

exp~ ivmT2mI2!D r

or

C2r 11,1~v!5~12p!r 11~12q!rexp$ iv@~r 11/2!T

1ds1m1d f 1m#%exp@2v2~ss1
2 1s f 1

2 !/2#

3 (
n1 ,n2 , . . . ,nr 1150

`

exp@~n11n21•••1nr 11!

3~ ivT2I 1!# (
m1 ,m2 , . . . ,mr50

`

exp@~m11m21

•••1mr !~ ivT2I 2!#.

A change of variables ton5n11n21•••1nr 11 and m
5m11m21•••1mr can now be performed to give

C2r 11,1~v!5~12p!r 11~12q!rexp$ iv@~r 11/2!T

1ds1m1d f 1m#%exp@2v2~ss1
2 1s f 1

2 !/2#

3 (
n50

`
~r 1n!!

r !n!
exp@n~ ivT2I 1!#

3 (
m50

`
~r 1m21!!

~r 21!!m!
exp@m~ ivT2I 2!#.

Taking the inverse Fourier transform gives

P2r 11,1~t2r 11,1!5~12p!r 11~12q!r (
n50

`
~r 1n!!

r !n!
pn

3 (
m50

`
~r 1m21!!

~r 21!!m!
qm

1

2p

3E
2`

`

exp$ iv@~r 1m1n11/2!T1ds1m

1d f 1m2t2r 11,1#%expS 2
v2

2
~ss1

2

1s f 1
2 ! Ddv,

and the final expression is
3-9
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P2r 11,1~t2r 11,1!5~12p!r 11~12q!r (
n50

`
~r 1n!!

r !n!
pn (

m50

`
~r 1m21!!

~r 21!!m!
qm

1

A2p~ss1
2 1s f 1

2 !

3expS 2
@~r 1m1n11/2!T1ds1m1d f 1m2t2r 11,1!

2

2~ss1
2 1s f 1

2 #
D . ~49!

Exactly the same procedure can be carried out for state 2 to obtain

P2r 11,2~t2r 11,2!5~12p!r~12q!r 11(
n50

`
~r 1n21!!

~r 21!!n!
pn (

m50

`
~r 1m!!

r !m!
qm

1

A2p~ss2
2 1s f 2

2 !

3expS 2
@~r 1m1n11/2!T1ds2m1d f 2m2t2r 11,2#

2

2~ss2
2 1s f 2

2 !
D . ~50!
ib

th

hif

e

n,
The same methods can be applied to obtain the distr
tions for evenj. The final results are

P2r ,1~t2r ,1!5~12p!r~12q!r (
n50

`
~r 1n21!!

~r 21!!n!
pn

3 (
m50

`
~r 1m21!!

~r 21!!m!
qm

1

A4pss1
2

3expS 2
@~r 1m1n!T2t2r ,1#

2

4ss1
2 D ~51!

and

P2r ,2~t2r ,2!5~12p!r~12q!r (
n50

`
~r 1n21!!

~r 21!!n!
pn

3 (
m50

`
~r 1m21!!

~r 21!!m!
qm

1

A4pss2
2

3expS 2
@~r 1m1n!T2t2r ,2#

2

4ss2
2 D . ~52!

1. The average return times

The average return times are the first moments of
return time densities. They are defined as

^t2,1&5E
0

`

t2,1P2,1~t2,1!dt2,1

and

^t2,2&5E
0

`

t2,2P2,2~t2,2!dt2,2.

These times are identical and independent of the time s
ds1m andd f 1m :

^t2,1&5^t2,2&5~ap1aq!
T

2
5^TR&. ~53!
01610
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We will now obtain two approximations for̂TR&, one
valid for uc/Du!1 and the other foruc/Du@1. The return
time is the summation of the resident times^t1,1& and^t1,2&,
and for weak noise can be approximated by expressions~42!
and ~43!:

^TR&.
T

I 1
1

T

I 2
.

For uc/Du!1, we can use Eqs.~25! and~34! to write the
expression as

^TR&.
TA2p

dtAuVxx9 ~x1,0!Vxx9 ~xs1,0!u
expS DU

D D F21S Dxc

D D 2G .
~54!

This is the final expression valid foruc/Du!1. Note, that in
contrast to the residence time, in this limit the return tim
depends quadratically onc.

We now obtain an approximation valid foruc/Du@1. In
this case, the ratio of the residence times^t1,1& to ^t1,2& is
proportional to exp(2c/D). Consequently, forc.0, we have
^t1,1&@^t1,2& and hence, to a very good approximatio
^TR&.^t1,1&. For c,0, the situation is reversed and^TR&
.^t1,2&. Therefore, forc.0, we can write

^TR1&.^t1,1&5
T

A2pW12maxdt1

5
~2p!3/2AAux12xsu

ADuVxx9 ~x1,0!Vxx9 ~xs,0!u
expS DV1s

D D ,

where

DV1s5V~xs,0!2V~x1,0!

52
a

2
~xs

22x1
2!1

b

4
~xs

42x1
4!2A~xs2x1!1c~xs2x1!

5DU1s1c~xs2x1!,

and x15x1(0) and xs5xs(0). Finally, this gives the ap-
proximation
3-10
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^TR1&.^t1,1&5
~2p!3/2AAux12xsu

ADuVxx9 ~x1,0!Vxx9 ~xs,0!u
expS DU1s

D D
3expS c

D
~xs2x1! D . ~55!

For c,0, the average return time can be found in a sim
lar manner.

^TR2&.^t1,2&.
T

A2pW21maxdt1

5
~2p!3/2AAux22xsu

ADuVxx9 ~x2 ,T/2!Vxx9 ~xs ,T/2!u
expS DV1s

D D ,

DV2s5V~xs ,T/2!2V~x2 ,T/2!

52
a

2
~xs

22x2
2!1

b

4
~xs

42x2
4!2A~xs2x2!1c~xs2x2!

5DU2s1c~xs2x2!,

wherex25x2(T/2) andxs5xs(T/2). Finally,

^TR2&.^t1,2&5
~2p!3/2AAux22xsu

ADuVxx9 ~x2 ,T/2!Vxx9 ~xs ,T/2!u
expS DU2s

D D
3expS c

D
~xs2x2! D . ~56!

It should be noted that expressions~55! and~56! not only
provide approximations to the average return time but als
the average residence times foruc/Du@1. Clearly, all these
expressions depend exponentially onc/D. This implies that
even forc!1 ~weak asymmetry!, the affect of the asymme
try on the average residence~and return times! can be expo-
nentially strongproviding the noise intensity is sufficiently
weak.

2. General expressions for the average switching times

For completeness, we now consider the first moment
the higher order switching time distributions, i.e., the tim
^t j ,l&. The average time intervalt j ,l can be calculated by
two ways. First by using the following expression

^t j ,l&5E
0

`

t j ,l Pj ,l~t j ,l !dt j ,l ,

and second by summing the average residence times

^t j ,l&5 (
k51

j

^tk,l&.

Since there are two kinds of distribution for oddj and two
kinds of distribution of the times for evenj, there are four
expression for the average times,

^t2r 11,1&5@~r 11!ap1raq#
T

2
1ds1m1d f 1m , ~57!
01610
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^t2r 11,2&5@rap1~r 11!aq#
T

2
1ds2m1d f 2m , ~58!

^t2r ,1&5~ap1aq!
rT

2
, ~59!

and

^t2r ,2&5~ap1aq!
rT

2
. ~60!

It is easy to see that the difference of the average tim
with odd j is equal to the difference of the average residen
times:

DT2r 115^t2r 11,1&2^t2r 11,2&

5~ap2aq!
T

2
12~ds1m1d f 1m!5DT, ~61!

and the average times with evenj are identical

^t2r ,1&5^t2r ,2&.

IV. RESULTS AND DISCUSSION

A. Residence time distributions and average residence times

Plots of the residence time distribution are shown in Fi
2 and 3. Figure 2 shows the distributions for three differe

FIG. 2. The residence time probability densitiesP1,1 and P1,2.
The parameters area51.0, b51.0, A50.34, V50.001, andD
50.003, ~a! c50.0, ~b! c50.005, ~c! c50.015.
3-11
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values ofc @increasingc from ~a!–~c!#. Figure 3 is for the
same values ofc but at a higher noise intensity. These d
tributions, calculated using Eqs.~37! and ~38!, consist of a
sequence of peaks that are approximately Gaussian with
ances f 1

2 1ss1
2 , wheres f 1

2 and ss1
2 are given by Eqs.~A7!

and ~A9!, respectively~note s f 2
2 5ss1

2 ). The widths of the
peaks inP1,1 are always the same as those inP1,2. For the
symmetric case@Figs. 2~a! and 3~a!#, the peaks are posi
tioned exactly at intervals of (m11/2)T. However, a non-
zero value ofc causes the peaks to shift. For positivec all the
peaks inP1,1 are shifted~by the same amount! to the right by
ds1m1d f 1m , where ds1m is given by Eq. ~A10! ~noting
ds1m52d f 2m) andd f 1m is given by Eq.~A4!. The shifts in
P1,2 are identical in magnitude but to the left. For negativec
the situation reverses~i.e., peaks shift left inP1,1 and right in
P1,2). These effects are demonstrated more clearly in Fig
that shows a comparison between the theory and the re
of a digital simulation of system~1!. The theory~solid line!
and simulation results~jagged line! are almost indistinguish
able. For clarity, the inset shows a comparison of the fi
two peaks ofP1,1 and P1,2. This clearly demonstrates th
shifts discussed above.

Another effect of the asymmetry is to desynchronize
response and external forcing. For a suitable choice of
rameters it is possible to make the system switch every
period with probability close to unity—such a situation
shown in Fig. 3~a!. We refer to this state as pseudosynch
nized ~or effectively synchronized with the periodic forc
@22#!. Increasing the asymmetry is seen to result in additio

FIG. 3. The residence time probability densitiesP1,1 and P1,2.
The parameters area51.0, b51.0, A50.34, V50.001, andD
50.0045,~a! c50.0, ~b! c50.005, ~c! c50.015.
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peaks appearing inP1,1. This indicates that the periodicity o
the response is broken and thus the response is partially
synchronized with respect to the driving field. Such a des
chronization leads to a large increase in the average r
dence timê t1,1&. It can be seen that there is little effect o
^t1,2&. This result is fairly intuitive. However, less obvious
that this desynchronization~and associated large change
residence time! can be achieved for extremely small asym
metries. This will be discussed in more detail below.

The results for the average residence times and their
ferenceDT are shown in Fig. 5. Figure 5~a! shows the de-
pendence of the residence times^t1,1& and ^t1,2& on noise
intensity for three different asymmetries. From this figure
can be seen, as one would expect, that the average resid
times increases monotonically~approximately exponentially!
with decreasing noise intensity. In the limit of largeD, all
curves tend to 0.5, i.e., at sufficiently large noise intensit
the response becomes pseudosynchronized to the ext
field. At larger values ofD ~not shown! further decrease in
the residence times will occur, but this is outside the range
validity of the theory. It can also be seen that the effect
asymmetry is to cause the residence times to differ—
larger the asymmetry, the larger the difference. This effec
shown more clearly in Fig. 5~b! where the differenceDT/T
between the residence times is shown as a function of
malized noise intensity. Clearly, at a fixed value of nois
increasingc leads to a~large! change inDT. However, it can
be seen that the effect of the asymmetry is reduced as
noise intensity is increased. This effect can also be cle
seen by comparing Figs. 2~c! and 3~c!. Figure 2~c! shows the
case where state 2 is pseudosynchronized~i.e., P1,2 has a
single peak! but state 1 is multipeaked. With an increase
noise, as shown in Fig. 3~c!, the multiple-peak structure in
P1,1 is reduced—thus, reducing the difference between
residence times. We note that the results in Fig. 5~b!are strik-
ingly similar to results obtained in Ref.@6# for a suprathresh-
old bias signal.

FIG. 4. Comparison of the theoretical residence time probab
densitiesP1,1 andP1,2 ~solid lines! to results obtained from a digita
simulation of system~1! ~jagged lines!. The parameters area
51.0, b51.0, A50.34,V50.001,D50.0039, andc50.015. The
inset shows the first two peaks only.
3-12
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ASYMMETRIC BISTABLE SYSTEMS SUBJECT TO . . . PHYSICAL REVIEW E68, 016103 ~2003!
The reason why increasing the noise intensity reduces
effect of the asymmetry can be understood by conside
Fig. 5~c! that plotsDT/T as a function ofc/D. The solid
lines are the full theory and the dashed lines show the
proximations for uc/Du!1. Clearly, at sufficiently smal
uc/Du, DT displays a linear dependence as predicted in
~46!. Furthermore, it easy to see from Eq.~46! that

DT} expS DU

D D c

D

1

AD
,

i.e., c is multiplied by a factor that depends exponentially
1/D. Thus, increasingD results in an almost exponentia
decrease in the effective value ofc.

The parameterc/D arises directly from the dc perturba
tion to the potentialV(x,t). This perturbation contributes a
additional factor ofcDx /D to the potential barrier height
whereDx measures the distance between the position of
potential minimum and maximum. This, in turn, leads to
additional factor of exp(cDx /D) appearing in the expression

FIG. 5. ~a! The average residence times as a function of
normalized noise intensity D/E, where E5V„xs(0),0…
2V„x1(0),0…. The lines 1a, 2a, and 3a correspond to the resi
dence timet1,1 with the parametersc50.005, c50025, andc
50.001, respectively. Lines 1b, 2b, and 3b correspond to the resi
dence timet1,2 with the parametersc50.005, c5.0025, andc
50.001. The theory is calculated from expressions~39! and ~40!.
~b! The difference between the average residence times as a
tion of the noise intensityD/E and ~c! as a function of the param
eter c/D. The solid lines were obtained by using Eq.~41!. The
parameters area51.0, b51.0, A50.34, and V50.001. The
dashed lines are the approximation~46!.
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for the transition rates~8!. Consequently, the important quan
tity for determining the effect asymmetry has on the dyna
ics is cDx /D. However, for the Duffing potential studie
here, Dx is O(1) and hence this reduces to simplyc/D.
Roughly speaking, it can be expected that the condit
uc/Du!1 will lead to linear perturbations to the dynamic
while, in the opposite limit ofuc/Du@1, the dynamics can be
expected to depend exponentially on the asymmetry. T
picture is borne out in Fig. 5~c! where the linear approxima
tion is seen to hold for values ofc/D;1 or less, while the
behavior becomes approximately exponential for large v
ues ofc/D.

B. Using DT as a detection tool

This work was, in part, inspired by recent theoretical a
experimental work@6,23# on developing residence time dis
tribution ~RTD!-based readout schemes for a class of non
ear dynamic sensors; the sensor under consideration w
prototype fluxgate magnetometer which uses a wound fe
magnetic core to detect weak dc magnetic fields in the p
ence of hysteresis. The core is driven by a known tim
sinusoidal magnetic field and the shift,DT, in the mean
residence times taken as a measure of the~unknown! dc sig-
nal. While the idea of exploiting the asymmetry as a det
tion tool using spectral techniques@10,11,2–4# is not new,
the RTD-based technique is relatively simple to impleme
usually requiring a simple counting circuit to keep track
the threshold crossing events and to maintain a running
erage of the residence times. A simple analog counter
forms this function quite well. It is also of interest to redu
the on-board power requirements as far as possible in m
applications, in turn this implies using a low-amplitude, low
frequency bias signal. At low power, spectral techniques
be difficult to implement. Also, conventional reado
schemes often employ a feedback or nulling circuit te
nique that leads to complicated electronics; in turn, this
creases the noise floor in the device. In recent work@6#, the
use of a somewhat suprathreshold bias signal in a RTD-ba
readout was investigated. Amongst the findings of this w
was the realization that a sinusoidal bias waveform might
be optimal; far greater sensitivity~or resolution! could be
obtained via alternate~nonsinusoidal! bias waveforms. It can
be shown@5# that, ideally, one obtains the optimal respon
with zero bias signal, i.e., very low on-board power~used
mainly for the readout circuitry!; however, this scenario is
unlikely to be realizable in many operational scenarios due
the ~usually short! observation time. Hence, it would be us
ful to operate the sensor with a bias signal that is not ze
but also not very strong.

These results are consistent with the ones obtained in
study. Figure 6 shows results ofDT against the amplitudeA
of the periodic field. Clearly,DT is seen to increase~approxi-
mately exponentially! as A is reduced. This would seem t
indicate that to maximizeDT the amplitude should be take
as small as possible. However, reducingA will also result in
a reduction of the average transitions rate and, thus, a c
promise is required;A should not be so small that unreaso
ably long averaging times are required to obtain good sta

e

nc-
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NIKITIN, STOCKS, AND BULSARA PHYSICAL REVIEW E68, 016103 ~2003!
tics, but should not be so large as to reduceDT to a
minimum.

Ultimately, however, the extent to which weak dc targ
signals can be detected using this idea depends cruciall
how sensitive the system dynamics are to the induced as
metry. Weak signals demand large sensitivity; this sensitiv
should not be gained at the expense of a reduced ou
signal-to-noise ratio. Our studies suggest that a possible
didate as a working regime could be the regimeuc/Du@1
(D!ucu!1). In this regime, the system acts as an expon
tial amplifier. However, a possible disadvantage of work
in this regime is that the observation time required to
good statistics may outweight any advantages. As sta
above, this is clearly a function of the particular operatio
scenario at hand.

C. Return time distributions and average return times

Plots of the return time distribution are shown in Figs
and 8. Figure 7 shows the distributions for three differe
values ofc @increasingc from ~a!–~c!#. Figure 8 is for the
same values ofc but at a higher noise intensity. These d
tributions, calculated using Eqs.~47! and ~48!, consist of a
sequence of Gaussian peaks positioned exactly at interva
mT. It can be seen that there are a number of notable dif
ences between the effect of asymmetry on the return t
density and the residence time distributions. The main dif
ence is that the peaks in the return time distributions arenot
shifted by the asymmetry. The only effect of asymmetry is
change the widths of the peaks and to alter their heig
Another difference is that, unlike the residence time distrib
tions, the widths of the peaks are different between thos
P2,1, which have a width of 2ss1, and those inP2,2 which
have a width of 2ss2. The variancesss1

2 andss2
2 are given

by Eqs. ~A9! and ~A7!, respectively~noting s f 1
2 5ss2

2 and
s f 2

2 5ss1
2 ). The difference in the widths is clearly shown

FIG. 6. The average difference between the residence timesDT
as function ofA. The data points were obtained from numeric
simulation of Eq.~1! for three different values ofc; these were
~circles! c50.005,~squares! c50.01, and~triangles! c50.015. The
solid lines are the theoretical results obtained from Eq.~41!. The
parameters wereV50.01, D50.0039. The numerical results ex
tend into the range where the periodic field is suprathreshold—
occurs approximately atA50.39
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Fig. 9 ~inset!. This figure shows a comparison between
theoretically calculated return time density~solid line! and
one obtained from the digital simulation~jagged line!. Just as
with the residence time, the two sets of results are ba
distinguishable.

The effect of the asymmetry on the peak widths of t
return time distributions can be understood by consider
the full sequence of transitions comprising the return tim
We have two possible transition scenarios: transitions
→2, 2→1, and finally, 1→2, and the opposite sequenc
2→1, 1→2, and finally, 2→1. Now the smearing giving
rise to the finite width of the peaks only occurs on the fi
and last transition~see previous discussion!. Consequently,
for the first transition sequence, the smearing arises from
1→2 transitions, while it arises from two 2→1 transitions in
the second case. These two transitions have different sm
ing associated with them and hence the widths of the pe
in P2,1 and P2,2 will be different. Similar arguments also
explain why the widths of the peaks in the residence ti
distributions are the same.

Another property of the return time distributions is th
P2,1 andP2,2 have exactly the same rate of decay~envelope!
and thus have identical average return times. This obviou
has to be the case because the average return time is the
of the two residence times, i.e.,^T&5^t1,1&1^t1,2&. Clearly,
it does not matter in which state the system started, the
erage return time must always be the same. The ave
return times are shown in Fig. 10. The solid lines in bo
Figs. 10~a! and~10~b! are the full theory that is compared t

l

is

FIG. 7. The return time probability densitiesP2,1 andP2,2. The
parameters area51.0, b51.0, A50.34, V50.001, and D
50.003, and~a! c50.0, ~b! c50.005, ~c! c50.015.
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ASYMMETRIC BISTABLE SYSTEMS SUBJECT TO . . . PHYSICAL REVIEW E68, 016103 ~2003!
two different approximations. In Fig. 10~a! it is compared to
the approximations valid foruc/Du@1, Eqs.~55! and ~56!,
and in Fig. 10~b! it is compared to the approximation vali
for uc/Du!1, Eq. ~54!. Figure 10~a! clearly demonstrates
that, just like the residence times, the return time is see
depend exponentially onc whenuc/Du@1. The full theory is
almost indistinguishable from the exponential approximat
when uc/Du.5. Similarly, in the opposite limituc/Du!1,
the parabolic approximation~54! gives accurate results whe
uc/Du,2.

FIG. 8. The return time probability densitiesP2,1 andP2,2. The
parameters area51.0, b51.0, A50.34, V50.001, D50.0045,
and ~a! c50.0, ~b! c50.005, ~c! c50.015.

FIG. 9. Comparison of the return time probability densitiesP2,1

andP2,2 ~solid lines! to results obtained from a digital simulation o
system~1! ~jagged lines!. The parameters area51.0, b51.0, A
50.34, V50.001,D50.0039, andc50.015.
01610
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D. Hierarchy of switching time distributions

Finally, the whole hierarchy of distributions are shown
Fig. 11. Figures 11~a–g! show, in order,P1,l –P7,l . The fol-
lowing general observations can be made; first, the peak
P2r 11,l (r 50,1,2, . . . ) arepositioned at times (m11/2)T
and the peaks inP2r ,1 are positioned at timesmT. However,
the peaks inP2r 11,l are all shifted by an amountds1m
1d f 1m ; this shift does not depend onr. Also, the decay rates
of the peaks betweenP2r 11,1 and P2r 11,2 are generally dif-
ferent for nonzero asymmetry. We therefore conclude that
behavior observed for the residence time distributionr
50) is repeated for all other ‘‘odd’’ distributions, i.e.,P3,l ,
P5,l , . . . . A similar conclusion follows for all the even dis
tributions P4,l ,P6,l , . . . , i.e., all the ‘‘even’’ distributions
have the same characteristics as the return time distribu
P2,l (r 51). These characteristics are that the peaks of
distributions P2r ,1 and P2r ,2 approximately coincide~no
shift! and are of approximately the same height~same decay
rate!. However, just like the return time distribution, th
peaks will have slightly different widths~and hence heights!.

It can be seen that two main effects arise when we
creaser; first, the position of the first peaks changes, a
second, that the profile~envelope! modulating the peak
heights changes. The first effect is straightforward to und
stand. For the sake of the discussion, let us consider
distributionP6,l in Fig. 11~f!. In our notation, the 6 indicate

FIG. 10. The logarithms of the average return time as a func
of the parameterc. The solid lines are the full theory obtained usin
Eq. ~53!. In ~a! the full theory is compared to the approximation
~55! and ~56! shown by the dashed lines and in~b! the theory is
compared to the approximation~54!—again the dashed lines are th
approximation. The parameters area51.0, b51.0, A50.34, and
V50.001.
3-15



-

st

e
ee
s
t

th
et
m
d
e
e

a
d

of
pa-

d
f
l

d
ng a

ro-
er
l-

e-
t to
less,
a

ics

er.

cur-
as

re-
e,
are

pos-
e-
n a
ide
en-

try
dy

of

NIKITIN, STOCKS, AND BULSARA PHYSICAL REVIEW E68, 016103 ~2003!
that we are considering the time between 611 transitions.
Given that under condition~9! the minimum time interval
between transitions isT/2, the minimum time interval be
tween seven transitions is 3T—this time corresponds with
positing of the first spike. In general, it follows that the fir
peak in distributionP2r 11,l will occur at (r 11/2)T and in
P2r ,l at rT.

V. CONCLUSIONS

A comprehensive theory describing the effect of asymm
try on the switching dynamics of a bistable system has b
presented. The full hierarchy of switching time distribution
and their average switching times has been obtained in
weak noise limit~limit of nonlinear response!.

One of the main effects of asymmetry is to cause
residence times in the two potential wells to differ. Theor
ical expressions that accurately predict the residence ti
and the difference between them,DT, have been develope
and validated. The mechanism that gives rise to a nonz
DT—that is, shifts in the peaks of the residence tim
densities—has also been accurately described.

The most notable conclusion is that even very sm
asymmetries can lead to very large changes in switching

FIG. 11. The figure shows~a! P1,1 andP1,2, ~b! P2,1 andP2,2,
~c! P3,1 andP3,2, ~d! P4,1 andP4,2, ~e! P5,1 andP5,2, ~f! P6,1 and
P6,2, ~g! P7,1 and P7,2. The thin lines correspond toP1,1, P2,1,
P3,1, P4,1, P5,1, P6,1, and P7,1. The parameters area51.0, b
51.0, c50.015, D50.0039, A50.34, andV50.001. The prob-
ability densities were obtained using Eqs.~37!, ~38!, ~49!, ~50!,
~51!, and~52!.
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namics. The important quantity that governs the effect
asymmetry was found to be the ratio of the asymmetry
rameterc to the noise intensityD. For c/D@1 statistics,
such as the residence times andDT are observed to depen
~approximately! exponentially onc. Consequently, a value o
noise intensity can always be found~regardless of how smal
c is! that forces this strong dependence.

In principle, this exquisite sensitivity could be exploite
to detect weak dc fields. The system could be biased usi
subthreshold ac field and the noise intensity adjusted~low-
ered! until a measurable asymmetry-induced effect is p
duced. In practice, finite observation times will place a low
limit on the size of asymmetry that could be detected. A
though, in principle, quantities such asDT can be made ar-
bitrarily large by reducing the noise intensity, the cons
quence of this is that transitions become too infrequen
enable good statistical averages to be obtained. Neverthe
it is expected that a useful working range will exist for
suitable choice of system parameters.

A large class of nonlinear devices exhibiting dynam
underpinned by a bistable potential of~or similar to! the
form discussed in this work could be operated in this mann
Our ongoing experimental work@23# on the implementation
of a fluxgate magnetometer in PCB technology as a pre
sor to a MeMs implementation of a coupled array, as well
a magnetometer that relies on ‘‘conventional,’’ i.e., rod-co
based technology@6#, is based on the RTD readout schem
using nonsinusoidal bias waveforms. These experiments
also aimed at reducing the on-board power as much as
sible; this might involve operation of the device in the r
gime indicated above, a fact that is under investigation. O
broader scale, the results of this paper are likely to find w
application in situations wherein one measures experim
tally the mean residence times differenceDT, then wishes to
use it, in a theoretical formula, to compute the dc asymme
that produced the shift in the RTDs for the two stable stea
states of the potential.
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APPENDIX

The probability distributionPd f 1
(d f 1) is given by Eq.

~29!,

Pd f 1
~d f 1!5~12p!21W12~d f 1!expS 2E

2T/4

d f 1
W12~s!dsD ,

~A1!

where we assume thatPd f 1
(d f 1)50 whenud f 1u.T/4. Using

Eq. ~14!, we find
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Pd f 1
~d f 1!5~12p!21W12maxexpF2

d f 1
2

2dt1
2

2W12maxE
2T/4

d f 1
expS 2

s2

2dt1
2D dsG . ~A2!

We now proceed to obtain the timed f 1m at which the
distributionPd f 1

(d f 1) reaches its maximum. This value re

resents~approximately! the average shift in the transitio
times away from the timesmT/2. The condition of the maxi-
mum leads to the equality

dPd f 1
~d f 1!

dd f 1
U

d f 15d f 1m

5~12p!21W12max

3expF2
d f 1

2

2dt1
2

2W12maxE
2T/4

d f 1
expS 2

s2

2dt1
2D dsG

3F2
d f 1

dt1
2

2W12maxexpS 2
d f 1

2

2dt1
2D G

d f 15d f 1m

50.

The above equality is fulfilled when

2
d f 1m

dt1
2

5W12maxexpS 2
d f 1m

2

2dt1
2D ~A3!

or

2R15W12maxdt1expS 2
R1

2

2 D , ~A4!

where

R15
d f 1m

dt1
. ~A5!

Using Eq. ~A4!, we can calculated f 1m . Then, a Taylor
expansion of the exponent in Eq.~A2! aboutd f 1m yields an
approximation to the distributionPd f 1

(d f 1),
01610
Pd f 1
~d f 1!.

W12max

12p
expH 2

d f 1m
2

2dt1
2

2W12max

3E
2T/4

d f 1m
expS 2

s2

2dt1
2D ds2F d f 1m

2dt1
2

1W12max

3expS 2
d f 1m

2

dt1
2 D G ~d f 12d f 1m!

2F 1

dt1
2

2W12maxexpS 2
d f 1m

2

2dt1
2D d f 1m

dt1
2 G

3
~d f 12d f 1m!2

2 J .

It is easy to see that, using Eq.~A3!, we can rewrite the las
expression in Gaussian form

Pd f 1
~d f 1!5

1

A2ps f 1
2

expS 2
~d f 12d f 1m!2

2s f 1
2 D , ~A6!

s f 1
2 5

dt1
2

11R1
2

. ~A7!

We find an analogous result forPd f 2
(d f 2),

Pd f 2
~d f 2!5~12q!21W21~d f 2!expS 2E

T/4

d f 21T/2

W21~s!dsD
5

1

A2ps f 2
2

expS 2
~d f 22d f 2m!2

2s f 2
2 D , ~A8!

where

s f 2
2 5

dt2
2

11R2
2

, ~A9!

andR2 satisfies the equation

2R25W21maxdt2expS 2
R2

2

2 D , ~A10!

whereR25d f 2m /dt2.
Equations~A4! and ~A10! have simple analytic solution

when the parameter c is small. In this case
W12maxdt1 ,W21maxdt2!1, and Eqs.~A4! and ~A10! can be
rewritten as

2R15W12maxdt1S 12
R1

2

2 D , R1,0,
3-17
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2R25W21maxdt2S 12
R2

2

2 D , R2,0.

Using the designations I 15A2pW12maxdt1 and I 2

5A2pW21maxdt2, we can write the solutions

R15
A2p

I 1
2A2p

I 1
2 125

A2p

I 1
S 12A112

I 1
2

2p
D

.
A2p

I 1
F12S 11

I 1
2

2p D G52
I 1

A2p

and

R2.2
I 2

A2p
,

i,
-
to
o

E.

ev

. E

B

01610
so that the final approximate solutions are

d f 1m5R1dt152
I 1dt1

A2p
~A11!

and

d f 2m5R2dt252
I 2dt2

A2p
. ~A12!

Let us note thatPd f 1
(d f 1)5Pds2

(2d f 1) and Pd f 2
(d f 2)

5Pds1
(2d f 2), i.e., d f 1m52ds2m , d f 2m52ds1m , for the

average values, ands f 1
2 5ss2

2 , s f 2
2 5ss1

2 for the dispersions.
s,

ev.

y-
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